

UTKAL INSTITUTE OF ENGINEERING & TECHNOLOGY

DISCIPLINE:	SEMESTER:			
Civil Engineering	3 rd Sem	NAME OF THE TEACHING Sa	FACULTY: hoo	Er.Bijayalaxmi
SUBJECT:	No of Days/Par week	Semester From Date:15/09/2	2022	
Geotechnical Engineering	No of Days/Per week class allotted: 4 Class P/W(60)	To Date:22/12/2	022	
		No. Of Weeks: 15		
WEEK	CLASS DAY	THEORY TOPICS	REMARKS	
	1 st	Introduction : Soil and Soil Engineering	Date	Dean/Principal
1 st	2 nd	Scope of Soil Mechanics		
1	3 rd	Origin and formation of soil.		
	4 th	Revision of last Class about soil formation		

	1 st	Water Content, Density, Specific gravity, Voids ratio, Porosity, Percentage of air voids, air content, degree of saturation.	
2 nd	2 nd	Density Index, Bulk/Saturated/dry/submerged density, Interrelationship of various soil parameters.	
	3 rd	Index Properties of Soil :Water Content & Specific Gravity.	
	4 th	Revision of last few Classes about Soil index and Various Parameters of soil.	

	1 st	Particle size distribution: Sieve analysis, wet mechanical analysis, particle size distribution curve and its uses.	
3 rd	2 nd	Consistency of Soils, Atterberg's Limits, Plasticity Index, Consistency Index, and Liquidity Index.	
	3 rd	Classification of Soil :General & I.S. Classification, Plasticity chart.	
	4 th	Revision of last few Classes about Consistency Soil and Classification of soil.	

	1 st	Permeability and Seepage: Concept of Permeability, Darcy's Law, Co-efficient of Permeability.	
4 th	2 nd	Factors affecting Permeability.	
	3 rd	Constant head permeability and falling head permeability Test.	
	4 th	Assignment Of Seepage and Permeability.	
	1 st	Seepage pressure, effective stress, phenomenon of quick sand.	
		Compaction and Consolidation:	

	2 nd	Compaction: Compaction, Light and heavy compaction Test, Optimum Moisture.	
5 th	3 rd	Content of Soil, Maximum dry density, Zero air void line, Factors affecting Compaction, Field compaction methods and their suitability.	
	4 th	Revision of Last Class About Compaction and Consolidation.	
	1 st	Consolidation: Consolidation, distinction between compaction and consolidation.	

$6^{ m th}$	2 nd	Terzaghi's model analogy of compression/ springs showing the process of consolidation – field implications.	
	3 rd	Revision of Last Class About Terzaghi's Model of Compression.	
	$4^{ m th}$	Shear Strength: Concept of shear strength, Mohr-Coulomb failure theory, Cohesion, Angle of internal friction	

	1 st	Strength envelope for different type of soil, Measurement of shear strength; - Direct shear test.	
	2 nd	Revision of Last class	
7 th	3 rd	Triaxial shear test, unconfined compression test and vaneshear test.	
	4 th	Revision of Last Classes About Compaction, Consolidation & Shear Strength.	
	1 st	Earth Pressure on Retaining Structures: Active earth pressure	
8 th	2 nd	Passive earth pressure.	

	3 rd	Earth pressure at rest.	
	4 th	Doubt Clearing Class and Assignment Questions Discussion.	
	1 st	Use of Rankine's formula for the following cases (cohesionless soil only).	
9 th	2 nd	(i) Backfill with no surcharge.	
	3 rd	Revision Class About Rankine's Formulas	
	4 th	Numerical based on Backfill with no surcharge.	
	1 st	(ii) Backfill with uniform surcharge.	

	2 nd	Numerical based on backfill with with uniform surcharge.	
10 th	3 rd	Giving Assignment and Doubt Clearing Class.	
	4 th	Overal Practice of both backfill with uniform and no Surcharge.	
	1 st	Foundation Engineering:Functions of foundations	
11 th	2 nd	shallow and deep foundation (Rankine's Assumption)	
	3 rd	Different type of shallow and deep foundations with sketches.	

	$4^{\rm th}$	Discussing About Last Class like Shallow and Deep Foundation.	
	1 st	Types of failure (General shear)	
	2 nd	Types of failure (Local shear)	
12 th	3 rd	Types of failure (Punching shear)	
	$4^{\rm th}$	Reminding about failure (General,Local&Punching Shear)	
	1 st	Bearing capacity of soil	
13 th	2 nd	Bearing capacity of soils using: Terzaghi's formulae	
	3 rd	Revision About Capacity of Soil	
	4 th	Numerical Based Terzarghi's Formulae	

	1 st	Bearing capacity of soils using:	
		IS Code formulae for strip	
14 th	2 nd	Numerical Using IS Code For Strip	
14	3 rd	Circular and square footings	
	4 th	Doubt Clearing Class About Previous Numerical.	
	1 st	IS Code For Square and Circular Footing	
	2 nd	Effect water table on bearing capacity of soil.	
15 th	3 rd	Plate load test and standard penetration test.	

	4 th	Giving Assignment For Semester Exam And Previous Year Question Discussion.		
--	-----------------	--	--	--

Tejaswini Das

Chittaraijan Perida

HOD DEAN PRINCIPAL